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Right-angled Coxeter groups (RACGs)

Let Γ be a finite simplicial undirected graph with vertex set S .

The right-angled Coxeter group (RACG) with defining graph Γ is

WΓ = ⟨S | s2 = 1∀s ∈ S , st = ts ⇐⇒ {s, t} ∈ EΓ⟩
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Examples of RACGs

Γ1 = Γ2 =
s t s t

▶ WΓ1 = ⟨s, t | s
2 = t2 = 1 and st = ts⟩ ∼= C2 × C2

▶ WΓ2 = ⟨s, t | s
2 = t2 = 1⟩ ∼= D∞



Examples of RACGs

If Γ a 4-cycle then

WΓ = ⟨s1, s2, s3, s4⟩ = ⟨s1, s3⟩ × ⟨s2, s4⟩ ∼= D∞ × D∞

is group generated by reflections in sides of square:



Examples of RACGs
Group generated by reflections in sides of right-angled hyperbolic
pentagon:

Source: Jeff Weeks’ software KaleidoTile.



Examples of RACGs
Group generated by reflections in sides of right-angled hyperbolic
dodecahedron:

Source: Jeff Weeks’ software CurvedSpaces.



Reduced words

For w ∈WΓ, an expression

w = s1 · · · sn with si ∈ S

is a reduced word for w if it’s a shortest word for w in S .

If reduced, we say w has length k , denoted ℓ(w) = k .

Theorem (Tits’ solution to the word problem)

For any RACG WΓ and any w ∈WΓ

1. any two reduced words for w are related by a (finite) sequence
of shuffles si sj ↔ sjsi , where {si , sj} ∈ EΓ.

2. a word w = s1 · · · sn is reduced ⇐⇒
it cannot be shortened by a (finite) sequence of shuffles and
deletions of si si .
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Infinite reduced words

From now on assume WΓ is infinite ⇐⇒ Γ not a complete graph.

Let S = {s1, . . . , sn} and write (i1, . . . , ik) for the word si1 · · · sik .

An infinite sequence (i1, i2, . . . ) is an infinite reduced word if each
initial finite subword is reduced.

Example

If WΓ = ⟨s1, s2 | s21 = s22 = 1⟩ ∼= D∞, the only two infinite reduced
words are:

(1, 2, 1, 2, 1, . . . ) = (1, 2)∞ and (2, 1, 2, 1, 2, . . . ) = (2, 1)∞.
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Example of infinite reduced words
Elements of WΓ = ⟨s1, . . . , s5⟩ ←→ pentagons.

e

1

2

3

4

5



Example of infinite reduced words

e

1

2

3

4

5

12 = 21

15 = 51



Example of infinite reduced words

e

1

2

3

4

5

12

15



Example of infinite reduced words

e

1

2

3

4

5

12

15

25

125



Example of infinite reduced words

e

1

2

3

4

5

12

15

25

125
1252

252



Example of infinite reduced words

e

1

2

3

4

5

12

15

25
125

1252
252

Continue to get infinite reduced words 1(25)∞ and (25)∞.

Apply infinite sequence of shuffles:

1(25)∞ = 125(25)∞ = 215(25)∞ = 251(25)∞ = · · · → (25)∞

but there’s no way to shuffle (25)∞ → 1(25)∞.
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Infinite reduced words
Lam–Pylyavskyy (2013):

▶ defined a partial order on infinite reduced words, via possibly
infinite sequences of shuffles.

▶ studied this partial order for Euclidean Coxeter groups.

T–Lam (2015) related this partial order to the topology of the
boundary of WΓ.
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Hecke algebras

WΓ has Hecke algebra HΓ:

▶ linear basis {Tw | w ∈WΓ}
▶ multiplication rules:

▶ if w = si1 · · · sik is reduced then

Tw = Tsi1
· · ·Tsik

▶ if ℓ(sw) < ℓ(w) i.e. sw = s(si1 · · · sik ) is not reduced then

TsTw = qTsw + (q − 1)Tw

Exercise: Ts invertible with

T−1
s = (q−1 − 1)T1 + q−1Ts

so all Tw invertible.
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Hecke C ∗-algebras
Introduced by Davis, Dymara, Januszkiewicz and Okun (2007) to
study cohomology of buildings.

For any q > 0 there is a unique unital ∗-algebra CΓ,q with:
▶ linear basis {Tw | w ∈WΓ}
▶ multiplication rules:

▶ if w = si1 · · · sik is reduced then

Tw = Tsi1
· · ·Tsik

▶ if ℓ(sw) < ℓ(w) i.e. s(si1 · · · sik ) is not reduced then

TsTw = qTsw + (q − 1)Tw

▶ (Tw )
∗ = Tw−1

Can show CΓ,q ↪→ B(ℓ2(WΓ))

The (reduced) Hecke C ∗-algebra C ∗
Γ,q of WΓ is the norm-closure

of CΓ,q.
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Simplicity of Hecke C ∗-algebras

WΓ has Poincaré series

WΓ(z) =
∑
w∈W

zℓ(w) =
∞∑
k=0

ckz
k

where ck = #{w ∈WΓ | ℓ(w) = k}.

Example

If WΓ = ⟨s1, s2 | s21 = s22 = 1⟩ ∼= D∞, then

WΓ(z) = 1 + 2z + 2z2 + · · · = 1 + 2
∞∑
k=1

zk
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Simplicity of Hecke C ∗-algebras

Define

R±1
Γ = {q, q−1 | q > 0 and WΓ(q) converges}

and write R±1
Γ for its closure in R>0.

Example

If WΓ = ⟨s1, s2 | s21 = s22 = 1⟩ ∼= D∞, then

WΓ(z) = 1 + 2z + 2z2 + · · · = 1 + 2
∞∑
k=1

zk

so R±1
Γ = R>0 \ {1} and R±1

Γ = R>0.
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Example

If WΓ = ⟨s1, s2, s3, s4, s5⟩ then

WΓ(z) = 1 + 5z + 15z2 + 40z3 + 105z4 + · · ·

= 1 + 5
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k=1

a2kz
k

where {ak}∞k=1 is the Fibonacci sequence.

Radius of convergence is 3−
√
5

2 ∼ 0.38 so

R±1
Γ =

(
0,

3−
√
5

2

]
∪
[

2

3−
√
5
,∞
)
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Simplicity of Hecke C ∗-algebras
Define

R±1
Γ = {q, q−1 | q > 0 and WΓ(q) converges}

and write R±1
Γ for its closure in R>0.

Theorem (Klisse 2023)

For q > 0, the algebra C ∗
Γ,q is simple if and only if q ̸∈ R±1

Γ .

Examples

1. If WΓ = ⟨s1, s2 | s21 = s22 = 1⟩ ∼= D∞ then C ∗
Γ,q is never simple.

2. If WΓ = ⟨s1, s2, s3, s4, s5⟩ then C ∗
Γ,q is simple ⇐⇒

3−
√
5

2 < q < 2
3−

√
5
.

Proof.
Topology of the boundary of WΓ.
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1. If WΓ = ⟨s1, s2 | s21 = s22 = 1⟩ ∼= D∞ then C ∗
Γ,q is never simple.

2. If WΓ = ⟨s1, s2, s3, s4, s5⟩ then C ∗
Γ,q is simple ⇐⇒

3−
√
5

2 < q < 2
3−

√
5
.

Proof.
Topology of the boundary of WΓ.
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