Right-angled Coxeter groups and Hecke *C**-algebras

Anne Thomas

University of Sydney

Gongfest 26 June 2025

1. Right-angled Coxeter groups

- 1. Right-angled Coxeter groups
- 2. Infinite reduced words (joint with Thomas Lam, 2015)

- 1. Right-angled Coxeter groups
- 2. Infinite reduced words (joint with Thomas Lam, 2015)
- 3. Hecke algebras and Hecke C^* -algebras

- 1. Right-angled Coxeter groups
- 2. Infinite reduced words (joint with Thomas Lam, 2015)
- 3. Hecke algebras and Hecke C^* -algebras
- 4. Simplicity of Hecke C*-algebras (Klisse 2023)

Right-angled Coxeter groups (RACGs)

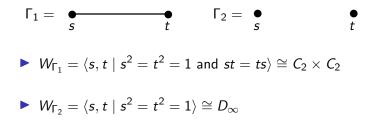
Let Γ be a finite simplicial undirected graph with vertex set S.

Right-angled Coxeter groups (RACGs)

Let Γ be a finite simplicial undirected graph with vertex set S.

The right-angled Coxeter group (RACG) with defining graph Γ is

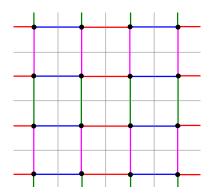
$$W_{\Gamma} = \langle S \mid s^2 = 1 \, \forall s \in S, \, st = ts \iff \{s,t\} \in E\Gamma \rangle$$



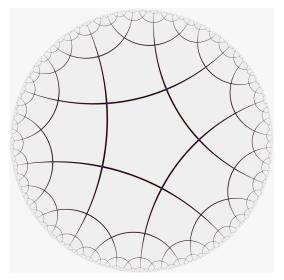
If Γ a 4-cycle then

 $W_{\Gamma} = \langle s_1, s_2, s_3, s_4 \rangle = \langle s_1, s_3 \rangle \times \langle s_2, s_4 \rangle \cong D_{\infty} \times D_{\infty}$

is group generated by reflections in sides of square:



Group generated by reflections in sides of right-angled hyperbolic pentagon:



Source: Jeff Weeks' software KaleidoTile.

Group generated by reflections in sides of right-angled hyperbolic dodecahedron:



Source: Jeff Weeks' software CurvedSpaces.

For $w \in W_{\Gamma}$, an expression

 $w = s_1 \cdots s_n$ with $s_i \in S$

is a reduced word for w if it's a shortest word for w in S.

For $w \in W_{\Gamma}$, an expression

 $w = s_1 \cdots s_n$ with $s_i \in S$

is a reduced word for w if it's a shortest word for w in S.

If reduced, we say w has length k, denoted $\ell(w) = k$.

For $w \in W_{\Gamma}$, an expression

 $w = s_1 \cdots s_n$ with $s_i \in S$

is a reduced word for w if it's a shortest word for w in S.

If reduced, we say w has length k, denoted $\ell(w) = k$.

Theorem (Tits' solution to the word problem) For any RACG W_{Γ} and any $w \in W_{\Gamma}$

For $w \in W_{\Gamma}$, an expression

 $w = s_1 \cdots s_n$ with $s_i \in S$

is a reduced word for w if it's a shortest word for w in S.

If reduced, we say w has length k, denoted $\ell(w) = k$.

Theorem (Tits' solution to the word problem) For any RACG W_{Γ} and any $w \in W_{\Gamma}$

1. any two reduced words for w are related by a (finite) sequence of shuffles $s_i s_j \leftrightarrow s_j s_i$, where $\{s_i, s_j\} \in E\Gamma$.

For $w \in W_{\Gamma}$, an expression

 $w = s_1 \cdots s_n$ with $s_i \in S$

is a reduced word for w if it's a shortest word for w in S.

If reduced, we say w has length k, denoted $\ell(w) = k$.

Theorem (Tits' solution to the word problem) For any RACG W_{Γ} and any $w \in W_{\Gamma}$

- 1. any two reduced words for w are related by a (finite) sequence of shuffles $s_i s_j \leftrightarrow s_j s_i$, where $\{s_i, s_j\} \in E\Gamma$.
- 2. a word $w = s_1 \cdots s_n$ is reduced \iff it cannot be shortened by a (finite) sequence of shuffles and deletions of $s_i s_i$.

From now on assume W_{Γ} is infinite $\iff \Gamma$ not a complete graph.

From now on assume W_{Γ} is infinite $\iff \Gamma$ not a complete graph.

Let $S = \{s_1, \ldots, s_n\}$ and write (i_1, \ldots, i_k) for the word $s_{i_1} \cdots s_{i_k}$.

From now on assume W_{Γ} is infinite $\iff \Gamma$ not a complete graph.

Let $S = \{s_1, \ldots, s_n\}$ and write (i_1, \ldots, i_k) for the word $s_{i_1} \cdots s_{i_k}$.

An infinite sequence $(i_1, i_2, ...)$ is an infinite reduced word if each initial finite subword is reduced.

From now on assume W_{Γ} is infinite $\iff \Gamma$ not a complete graph.

Let $S = \{s_1, \ldots, s_n\}$ and write (i_1, \ldots, i_k) for the word $s_{i_1} \cdots s_{i_k}$.

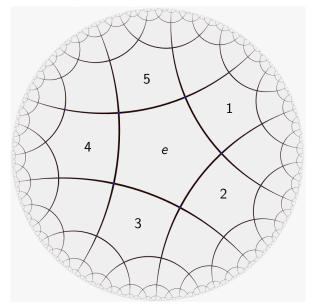
An infinite sequence $(i_1, i_2, ...)$ is an infinite reduced word if each initial finite subword is reduced.

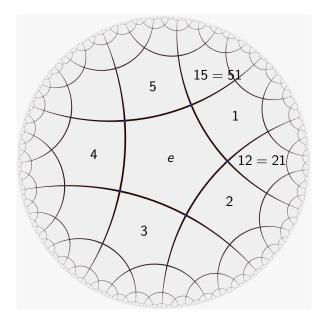
Example

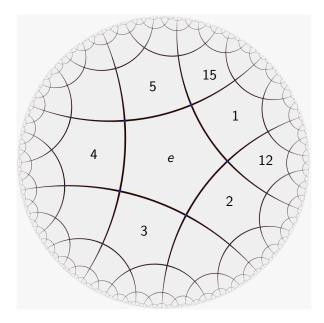
If $W_{\Gamma} = \langle s_1, s_2 \mid s_1^2 = s_2^2 = 1 \rangle \cong D_{\infty}$, the only two infinite reduced words are:

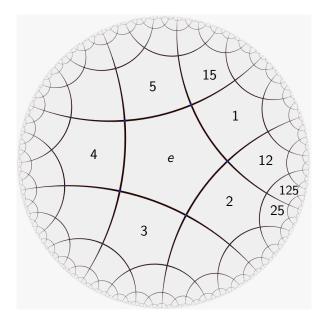
 $(1,2,1,2,1,\dots) = (1,2)^{\infty}$ and $(2,1,2,1,2,\dots) = (2,1)^{\infty}$.

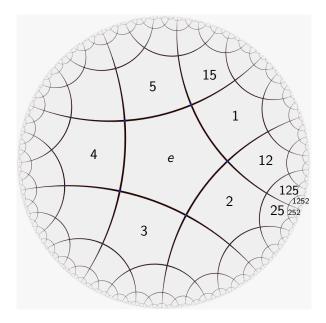
Elements of $W_{\Gamma} = \langle s_1, \ldots, s_5 \rangle \longleftrightarrow$ pentagons.

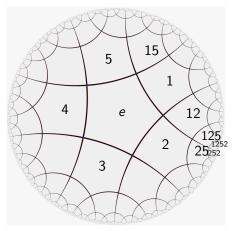




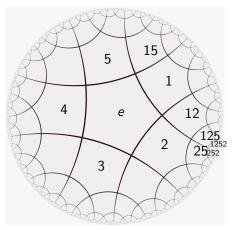






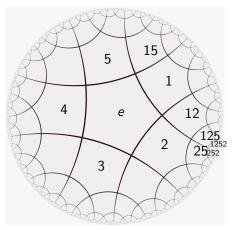


Continue to get infinite reduced words $1(25)^{\infty}$ and $(25)^{\infty}$.



Continue to get infinite reduced words $1(25)^{\infty}$ and $(25)^{\infty}$. Apply infinite sequence of shuffles:

$$1(25)^{\infty} = 125(25)^{\infty} = 215(25)^{\infty} = 251(25)^{\infty} = \cdots \to (25)^{\infty}$$



Continue to get infinite reduced words $1(25)^{\infty}$ and $(25)^{\infty}$. Apply infinite sequence of shuffles:

$$1(25)^{\infty} = 125(25)^{\infty} = 215(25)^{\infty} = 251(25)^{\infty} = \cdots \to (25)^{\infty}$$

but there's no way to shuffle $(25)^\infty o 1(25)^\infty.$

Lam–Pylyavskyy (2013):

 defined a partial order on infinite reduced words, via possibly infinite sequences of shuffles.

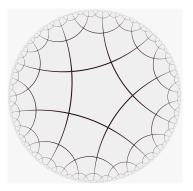
Lam–Pylyavskyy (2013):

- defined a partial order on infinite reduced words, via possibly infinite sequences of shuffles.
- studied this partial order for Euclidean Coxeter groups.

Lam–Pylyavskyy (2013):

- defined a partial order on infinite reduced words, via possibly infinite sequences of shuffles.
- studied this partial order for Euclidean Coxeter groups.

T–Lam (2015) related this partial order to the topology of the boundary of W_{Γ} .



 W_{Γ} has Hecke algebra \mathcal{H}_{Γ} :

 W_{Γ} has Hecke algebra \mathcal{H}_{Γ} :

► linear basis $\{T_w \mid w \in W_{\Gamma}\}$

 W_{Γ} has Hecke algebra \mathcal{H}_{Γ} :

- ► linear basis $\{T_w \mid w \in W_{\Gamma}\}$
- multiplication rules:

 W_{Γ} has Hecke algebra \mathcal{H}_{Γ} :

- ► linear basis $\{T_w \mid w \in W_{\Gamma}\}$
- multiplication rules:
 - if $w = s_{i_1} \cdots s_{i_k}$ is reduced then

$$T_w = T_{s_{i_1}} \cdots T_{s_{i_k}}$$

 W_{Γ} has Hecke algebra \mathcal{H}_{Γ} :

- ► linear basis $\{T_w \mid w \in W_{\Gamma}\}$
- multiplication rules:
 - if $w = s_{i_1} \cdots s_{i_k}$ is reduced then

$$T_w = T_{s_{i_1}} \cdots T_{s_{i_k}}$$

• if $\ell(sw) < \ell(w)$ i.e. $sw = s(s_{i_1} \cdots s_{i_k})$ is not reduced then $T_s T_w = q T_{sw} + (q-1) T_w$

 W_{Γ} has Hecke algebra \mathcal{H}_{Γ} :

- ► linear basis $\{T_w \mid w \in W_{\Gamma}\}$
- multiplication rules:
 - if $w = s_{i_1} \cdots s_{i_k}$ is reduced then

$$T_w = T_{s_{i_1}} \cdots T_{s_{i_k}}$$

• if
$$\ell(sw) < \ell(w)$$
 i.e. $sw = s(s_{i_1} \cdots s_{i_k})$ is not reduced then
 $T_s T_w = q T_{sw} + (q-1) T_w$

Exercise: T_s invertible with

$$T_s^{-1} = (q^{-1} - 1)T_1 + q^{-1}T_s$$

so all T_w invertible.

Introduced by Davis, Dymara, Januszkiewicz and Okun (2007) to study cohomology of buildings.

Introduced by Davis, Dymara, Januszkiewicz and Okun (2007) to study cohomology of buildings.

For any q > 0 there is a unique unital *-algebra $C_{\Gamma,q}$ with:

Introduced by Davis, Dymara, Januszkiewicz and Okun (2007) to study cohomology of buildings.

For any q > 0 there is a unique unital *-algebra $C_{\Gamma,q}$ with:

```
linear basis \{T_w \mid w \in W_{\Gamma}\}
```

Introduced by Davis, Dymara, Januszkiewicz and Okun (2007) to study cohomology of buildings.

For any q > 0 there is a unique unital *-algebra $C_{\Gamma,q}$ with:

- ► linear basis $\{T_w \mid w \in W_{\Gamma}\}$
- multiplication rules:
 - if $w = s_{i_1} \cdots s_{i_k}$ is reduced then

$$T_w = T_{s_{i_1}} \cdots T_{s_{i_k}}$$

▶ if $\ell(sw) < \ell(w)$ i.e. $s(s_{i_1} \cdots s_{i_k})$ is not reduced then

$$T_s T_w = q T_{sw} + (q-1) T_w$$

Introduced by Davis, Dymara, Januszkiewicz and Okun (2007) to study cohomology of buildings.

For any q > 0 there is a unique unital *-algebra $C_{\Gamma,q}$ with:

- ► linear basis $\{T_w \mid w \in W_{\Gamma}\}$
- multiplication rules:

• if $w = s_{i_1} \cdots s_{i_k}$ is reduced then

$$T_w = T_{s_{i_1}} \cdots T_{s_{i_k}}$$

▶ if $\ell(sw) < \ell(w)$ i.e. $s(s_{i_1} \cdots s_{i_k})$ is not reduced then

$$T_s T_w = q T_{sw} + (q-1) T_w$$

•
$$(T_w)^* = T_{w^{-1}}$$

Introduced by Davis, Dymara, Januszkiewicz and Okun (2007) to study cohomology of buildings.

For any q > 0 there is a unique unital *-algebra $C_{\Gamma,q}$ with:

- ► linear basis $\{T_w \mid w \in W_{\Gamma}\}$
- multiplication rules:

• if $w = s_{i_1} \cdots s_{i_k}$ is reduced then

$$T_w = T_{s_{i_1}} \cdots T_{s_{i_k}}$$
• if $\ell(sw) < \ell(w)$ i.e. $s(s_{i_1} \cdots s_{i_k})$ is not reduced

$$T_s T_w = q T_{sw} + (q-1) T_w$$

then

•
$$(T_w)^* = T_{w^{-1}}$$

Can show $C_{\Gamma,q} \hookrightarrow \mathcal{B}(\ell^2(W_{\Gamma}))$

Introduced by Davis, Dymara, Januszkiewicz and Okun (2007) to study cohomology of buildings.

For any q > 0 there is a unique unital *-algebra $C_{\Gamma,q}$ with:

- ► linear basis $\{T_w \mid w \in W_{\Gamma}\}$
- multiplication rules:

• if $w = s_{i_1} \cdots s_{i_k}$ is reduced then

$$T_w = T_{s_{i_1}} \cdots T_{s_{i_k}}$$

▶ if $\ell(sw) < \ell(w)$ i.e. $s(s_{i_1} \cdots s_{i_k})$ is not reduced then

$$T_s T_w = q T_{sw} + (q-1) T_w$$

•
$$(T_w)^* = T_{w^{-1}}$$

Can show $C_{\Gamma,q} \hookrightarrow \mathcal{B}(\ell^2(W_{\Gamma}))$

The (reduced) Hecke C*-algebra $C^*_{\Gamma,q}$ of W_{Γ} is the norm-closure of $C_{\Gamma,q}$.

 W_{Γ} has Poincaré series

$$\mathcal{W}_{\Gamma}(z) = \sum_{w \in W} z^{\ell(w)} = \sum_{k=0}^{\infty} c_k z^k$$

where $c_k = \#\{w \in W_{\Gamma} \mid \ell(w) = k\}.$

 W_{Γ} has Poincaré series

$$W_{\Gamma}(z) = \sum_{w \in W} z^{\ell(w)} = \sum_{k=0}^{\infty} c_k z^k$$

where $c_k = \#\{w \in W_{\Gamma} \mid \ell(w) = k\}.$

Example

If
$$W_{\Gamma}=\langle s_1,s_2\mid s_1^2=s_2^2=1
angle\cong D_{\infty}$$
, then

$$W_{\Gamma}(z) = 1 + 2z + 2z^2 + \dots = 1 + 2\sum_{k=1}^{\infty} z^k$$

Simplicity of Hecke C^* -algebras W_{Γ} has Poincaré series

$$W_{\Gamma}(z) = \sum_{w \in W} z^{\ell(w)} = \sum_{k=0}^{\infty} c_k z^k$$

where $c_k = \#\{w \in W_{\Gamma} \mid \ell(w) = k\}.$

Example

If $W_{\Gamma} = \langle \mathit{s}_1, \mathit{s}_2, \mathit{s}_3, \mathit{s}_4, \mathit{s}_5
angle$ then

$$W_{\Gamma}(z) = 1 + 5z + 15z^2 + 40z^3 + 105z^4 + \cdots$$

Define

$$R_{\Gamma}^{\pm 1} = \{q, q^{-1} \mid q > 0 \text{ and } W_{\Gamma}(q) \text{ converges}\}$$

and write $\overline{R_{\Gamma}^{\pm 1}}$ for its closure in $\mathbb{R}_{>0}$.

Define

$$R_{\Gamma}^{\pm 1} = \{q, q^{-1} \mid q > 0 \text{ and } W_{\Gamma}(q) \text{ converges}\}$$

and write $\overline{R_{\Gamma}^{\pm 1}}$ for its closure in $\mathbb{R}_{>0}$.

Example If $W_{\Gamma} = \langle s_1, s_2 | s_1^2 = s_2^2 = 1 \rangle \cong D_{\infty}$, then $W_{\Gamma}(z) = 1 + 2z + 2z^2 + \dots = 1 + 2\sum_{k=1}^{\infty} z^k$ so $R_{\Gamma}^{\pm 1} = \mathbb{R}_{>0} \setminus \{1\}$ and $\overline{R_{\Gamma}^{\pm 1}} = \mathbb{R}_{>0}$.

Simplicity of Hecke C*-algebras Define

$$R_{\Gamma}^{\pm 1} = \{q, q^{-1} \mid q > 0 \text{ and } W_{\Gamma}(q) \text{ converges}\}$$

and write $\overline{R_{\Gamma}^{\pm 1}}$ for its closure in $\mathbb{R}_{>0}$.

Example

If $\mathit{W}_{\Gamma} = \langle \mathit{s}_1, \mathit{s}_2, \mathit{s}_3, \mathit{s}_4, \mathit{s}_5
angle$ then

$$W_{\Gamma}(z) = 1 + 5z + 15z^2 + 40z^3 + 105z^4 + \cdots$$

Simplicity of Hecke C*-algebras Define

$$R_{\Gamma}^{\pm 1} = \{q, q^{-1} \mid q > 0 \text{ and } W_{\Gamma}(q) \text{ converges}\}$$

and write $\overline{R_{\Gamma}^{\pm 1}}$ for its closure in $\mathbb{R}_{>0}$.

Example

If $W_{\Gamma} = \langle \mathit{s}_1, \mathit{s}_2, \mathit{s}_3, \mathit{s}_4, \mathit{s}_5
angle$ then

$$W_{\Gamma}(z) = 1 + 5z + 15z^2 + 40z^3 + 105z^4 + \dots = 1 + 5\sum_{k=1}^{\infty} a_{2k}z^k$$

where $\{a_k\}_{k=1}^{\infty}$ is the Fibonacci sequence.

Simplicity of Hecke C*-algebras Define

$$R_{\Gamma}^{\pm 1} = \{q, q^{-1} \mid q > 0 \text{ and } W_{\Gamma}(q) \text{ converges}$$

and write $\overline{R_{\Gamma}^{\pm 1}}$ for its closure in $\mathbb{R}_{>0}$.

Example

If $\mathcal{W}_{\Gamma} = \langle \textit{s}_1, \textit{s}_2, \textit{s}_3, \textit{s}_4, \textit{s}_5
angle$ then

$$W_{\Gamma}(z) = 1 + 5z + 15z^2 + 40z^3 + 105z^4 + \cdots = 1 + 5\sum_{k=1}^{\infty} a_{2k}z^k$$

where $\{a_k\}_{k=1}^{\infty}$ is the Fibonacci sequence. Radius of convergence is $\frac{3-\sqrt{5}}{2} \sim 0.38$ so

$$\overline{R_{\Gamma}^{\pm 1}} = \left(0, \frac{3-\sqrt{5}}{2}\right] \cup \left[\frac{2}{3-\sqrt{5}}, \infty\right)$$

Define

$$R_{\Gamma}^{\pm 1} = \{q, q^{-1} \mid q > 0 \text{ and } W_{\Gamma}(q) \text{ converges} \}$$

and write $\overline{R_{\Gamma}^{\pm 1}}$ for its closure in $\mathbb{R}_{>0}$.

Theorem (Klisse 2023) For q > 0, the algebra $C^*_{\Gamma,q}$ is simple if and only if $q \notin \overline{R^{\pm 1}_{\Gamma}}$.

Define

$$R_{\Gamma}^{\pm 1} = \{q, q^{-1} \mid q > 0 \text{ and } W_{\Gamma}(q) \text{ converges}\}$$

and write $\overline{R_{\Gamma}^{\pm 1}}$ for its closure in $\mathbb{R}_{>0}$.

Theorem (Klisse 2023) For q > 0, the algebra $C^*_{\Gamma,q}$ is simple if and only if $q \notin \overline{R^{\pm 1}_{\Gamma}}$. Examples

1. If $W_{\Gamma} = \langle s_1, s_2 | s_1^2 = s_2^2 = 1 \rangle \cong D_{\infty}$ then $C^*_{\Gamma,q}$ is never simple.

Define

$$R_{\Gamma}^{\pm 1} = \{q, q^{-1} \mid q > 0 \text{ and } W_{\Gamma}(q) \text{ converges}\}$$

and write $\overline{R_{\Gamma}^{\pm 1}}$ for its closure in $\mathbb{R}_{>0}$.

Theorem (Klisse 2023) For q > 0, the algebra $C^*_{\Gamma,q}$ is simple if and only if $q \notin \overline{R^{\pm 1}_{\Gamma}}$.

Examples

1. If $W_{\Gamma} = \langle s_1, s_2 | s_1^2 = s_2^2 = 1 \rangle \cong D_{\infty}$ then $C^*_{\Gamma,q}$ is never simple. 2. If $W_{\Gamma} = \langle s_1, s_2, s_3, s_4, s_5 \rangle$ then $C^*_{\Gamma,q}$ is simple $\iff \frac{3-\sqrt{5}}{2} < q < \frac{2}{3-\sqrt{5}}$.

Define

$$R_{\Gamma}^{\pm 1} = \{q, q^{-1} \mid q > 0 \text{ and } W_{\Gamma}(q) \text{ converges}\}$$

and write $\overline{R_{\Gamma}^{\pm 1}}$ for its closure in $\mathbb{R}_{>0}$.

Theorem (Klisse 2023) For q > 0, the algebra $C^*_{\Gamma,q}$ is simple if and only if $q \notin \overline{R^{\pm 1}_{\Gamma}}$.

Examples

1. If
$$W_{\Gamma} = \langle s_1, s_2 | s_1^2 = s_2^2 = 1 \rangle \cong D_{\infty}$$
 then $C^*_{\Gamma,q}$ is never simple.
2. If $W_{\Gamma} = \langle s_1, s_2, s_3, s_4, s_5 \rangle$ then $C^*_{\Gamma,q}$ is simple $\iff \frac{3-\sqrt{5}}{2} < q < \frac{2}{3-\sqrt{5}}$.

Proof.

Topology of the boundary of W_{Γ} .